P5.2-5) A man pushes a 100-lb wood crate along a painted concrete floor. If he wishes to accelerate the crate to at least 3 mph starting from rest in the span of 5 seconds, what constant pushing force (**P**) is needed if it is applied at an angle of $\theta = 35^{\circ}$? The kinetic and static coefficients of friction are 0.2 and 0.28, respectively.

Given:

_			
-	n	М	٠
		u	

Solution:

Acceleration

What is the desired acceleration of the crate?

a = _____

FBD

Draw a free-body diagram of the crate. Remember to include a coordinate system.

Friction force.

Determine the kinetic friction force between the crate and the floor as a function of *P*.

 $F_{fk}\left(P\right) = \underline{\hspace{1cm}}$

Equation of motion

Derive the equation of motion for the crate in the x-direction and then solve for P, assuming that the crate moves.

P =

Check assumptions

Determine the maximum static friction force between the crate and the floor using the value of P calculated above.
<i>N</i> =
$F_{fs,max} = $
Calculate the static friction force using the P calculated above.
$F_{fs} =$
Does the crate move and why or why not?
Yes No